Observation of Charge Asymmetry Dependence of Pion Elliptic Flow and the Possible Chiral Magnetic Wave in Heavy-Ion Collisions.

نویسندگان

  • L Adamczyk
  • J K Adkins
  • G Agakishiev
  • M M Aggarwal
  • Z Ahammed
  • I Alekseev
  • J Alford
  • A Aparin
  • D Arkhipkin
  • E C Aschenauer
  • G S Averichev
  • A Banerjee
  • R Bellwied
  • A Bhasin
  • A K Bhati
  • P Bhattarai
  • J Bielcik
  • J Bielcikova
  • L C Bland
  • I G Bordyuzhin
  • J Bouchet
  • A V Brandin
  • I Bunzarov
  • T P Burton
  • J Butterworth
  • H Caines
  • M Calderón de la Barca Sánchez
  • J M Campbell
  • D Cebra
  • M C Cervantes
  • I Chakaberia
  • P Chaloupka
  • Z Chang
  • S Chattopadhyay
  • J H Chen
  • X Chen
  • J Cheng
  • M Cherney
  • W Christie
  • G Contin
  • H J Crawford
  • S Das
  • L C De Silva
  • R R Debbe
  • T G Dedovich
  • J Deng
  • A A Derevschikov
  • B di Ruzza
  • L Didenko
  • C Dilks
  • X Dong
  • J L Drachenberg
  • J E Draper
  • C M Du
  • L E Dunkelberger
  • J C Dunlop
  • L G Efimov
  • J Engelage
  • G Eppley
  • R Esha
  • O Evdokimov
  • O Eyser
  • R Fatemi
  • S Fazio
  • P Federic
  • J Fedorisin
  • Z Feng
  • P Filip
  • Y Fisyak
  • C E Flores
  • L Fulek
  • C A Gagliardi
  • D Garand
  • F Geurts
  • A Gibson
  • M Girard
  • L Greiner
  • D Grosnick
  • D S Gunarathne
  • Y Guo
  • S Gupta
  • A Gupta
  • W Guryn
  • A Hamad
  • A Hamed
  • R Haque
  • J W Harris
  • L He
  • S Heppelmann
  • S Heppelmann
  • A Hirsch
  • G W Hoffmann
  • D J Hofman
  • S Horvat
  • H Z Huang
  • B Huang
  • X Huang
  • P Huck
  • T J Humanic
  • G Igo
  • W W Jacobs
  • H Jang
  • K Jiang
  • E G Judd
  • S Kabana
  • D Kalinkin
  • K Kang
  • K Kauder
  • H W Ke
  • D Keane
  • A Kechechyan
  • Z H Khan
  • D P Kikola
  • I Kisel
  • A Kisiel
  • D D Koetke
  • T Kollegger
  • L K Kosarzewski
  • L Kotchenda
  • A F Kraishan
  • P Kravtsov
  • K Krueger
  • I Kulakov
  • L Kumar
  • R A Kycia
  • M A C Lamont
  • J M Landgraf
  • K D Landry
  • J Lauret
  • A Lebedev
  • R Lednicky
  • J H Lee
  • W Li
  • Y Li
  • C Li
  • N Li
  • Z M Li
  • X Li
  • X Li
  • M A Lisa
  • F Liu
  • T Ljubicic
  • W J Llope
  • M Lomnitz
  • R S Longacre
  • X Luo
  • L Ma
  • R Ma
  • Y G Ma
  • G L Ma
  • N Magdy
  • R Majka
  • A Manion
  • S Margetis
  • C Markert
  • H Masui
  • H S Matis
  • D McDonald
  • K Meehan
  • N G Minaev
  • S Mioduszewski
  • B Mohanty
  • M M Mondal
  • D A Morozov
  • M K Mustafa
  • B K Nandi
  • Md Nasim
  • T K Nayak
  • G Nigmatkulov
  • L V Nogach
  • S Y Noh
  • J Novak
  • S B Nurushev
  • G Odyniec
  • A Ogawa
  • K Oh
  • V Okorokov
  • D L Olvitt
  • B S Page
  • R Pak
  • Y X Pan
  • Y Pandit
  • Y Panebratsev
  • B Pawlik
  • H Pei
  • C Perkins
  • A Peterson
  • P Pile
  • M Planinic
  • J Pluta
  • N Poljak
  • K Poniatowska
  • J Porter
  • M Posik
  • A M Poskanzer
  • N K Pruthi
  • J Putschke
  • H Qiu
  • A Quintero
  • S Ramachandran
  • S Raniwala
  • R Raniwala
  • R L Ray
  • H G Ritter
  • J B Roberts
  • O V Rogachevskiy
  • J L Romero
  • A Roy
  • L Ruan
  • J Rusnak
  • O Rusnakova
  • N R Sahoo
  • P K Sahu
  • I Sakrejda
  • S Salur
  • J Sandweiss
  • A Sarkar
  • J Schambach
  • R P Scharenberg
  • A M Schmah
  • W B Schmidke
  • N Schmitz
  • J Seger
  • P Seyboth
  • N Shah
  • E Shahaliev
  • P V Shanmuganathan
  • M Shao
  • B Sharma
  • M K Sharma
  • W Q Shen
  • S S Shi
  • Q Y Shou
  • E P Sichtermann
  • R Sikora
  • M Simko
  • M J Skoby
  • D Smirnov
  • N Smirnov
  • L Song
  • P Sorensen
  • H M Spinka
  • B Srivastava
  • T D S Stanislaus
  • M Stepanov
  • R Stock
  • M Strikhanov
  • B Stringfellow
  • M Sumbera
  • B J Summa
  • X Sun
  • X M Sun
  • Z Sun
  • Y Sun
  • B Surrow
  • D N Svirida
  • M A Szelezniak
  • Z Tang
  • A H Tang
  • T Tarnowsky
  • A N Tawfik
  • J H Thomas
  • A R Timmins
  • D Tlusty
  • M Tokarev
  • S Trentalange
  • R E Tribble
  • P Tribedy
  • S K Tripathy
  • B A Trzeciak
  • O D Tsai
  • T Ullrich
  • D G Underwood
  • I Upsal
  • G Van Buren
  • G van Nieuwenhuizen
  • M Vandenbroucke
  • R Varma
  • A N Vasiliev
  • R Vertesi
  • F Videbaek
  • Y P Viyogi
  • S Vokal
  • S A Voloshin
  • A Vossen
  • F Wang
  • Y Wang
  • H Wang
  • J S Wang
  • Y Wang
  • G Wang
  • G Webb
  • J C Webb
  • L Wen
  • G D Westfall
  • H Wieman
  • S W Wissink
  • R Witt
  • Y F Wu
  • Z Xiao
  • W Xie
  • K Xin
  • Y F Xu
  • N Xu
  • Z Xu
  • Q H Xu
  • H Xu
  • Y Yang
  • Y Yang
  • C Yang
  • S Yang
  • Q Yang
  • Z Ye
  • P Yepes
  • L Yi
  • K Yip
  • I-K Yoo
  • N Yu
  • H Zbroszczyk
  • W Zha
  • X P Zhang
  • J B Zhang
  • J Zhang
  • Z Zhang
  • S Zhang
  • Y Zhang
  • J L Zhang
  • F Zhao
  • J Zhao
  • C Zhong
  • L Zhou
  • X Zhu
  • Y Zoulkarneeva
  • M Zyzak
چکیده

We present measurements of π(-) and π(+) elliptic flow, v(2), at midrapidity in Au+Au collisions at √[s(NN)]=200, 62.4, 39, 27, 19.6, 11.5, and 7.7 GeV, as a function of event-by-event charge asymmetry, A(ch), based on data from the STAR experiment at RHIC. We find that π(-) (π(+)) elliptic flow linearly increases (decreases) with charge asymmetry for most centrality bins at √[s(NN)]=27  GeV and higher. At √[s(NN)]=200  GeV, the slope of the difference of v(2) between π(-) and π(+) as a function of A(ch) exhibits a centrality dependence, which is qualitatively similar to calculations that incorporate a chiral magnetic wave effect. Similar centrality dependence is also observed at lower energies.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Modeling Magnetic Field in Heavy ion Collisions Using Two Different Nuclear Charge Density Distributions

By studying the properties of matter during heavy-ion collisions, a better understanding of the Quark-Gluon plasma is possible. One of the main areas of this study is the calculation of the magnetic field, particularly how the values of conductivity affects this field and how the field strength changes with proper time. In matching the theoretical calculations with results obtained in lab, two diffe...

متن کامل

Excitation function of nucleon and pion elliptic flow in relativistic heavy-ion collisions

Within a relativistic transport (ART) model for heavy-ion collisions, we show that the recently observed characteristic change from out-of-plane to in-plane elliptic flow of protons in mid-central Au+Au collisions as the incident energy increases is consistent with the calculated results using a stiff nuclear equation of state (K= 380 MeV). We have also studied the elliptical flow of pions and ...

متن کامل

In-plane elliptic flow of resonance particles in relativistic heavy-ion collisions.

We analyze the second Fourier coefficient v(2) of the pion azimuthal distribution in noncentral heavy-ion collisions in a relativistic hydrodynamic model. The exact treatment of the decay kinematics of resonances leads to almost vanishing azimuthal anisotropy of pions near the midrapidity, while the matter elliptic flow is in plane at freeze-out. In addition, we reproduce the rapidity dependenc...

متن کامل

Estimate of the magnetic field strength in heavy-ion collisions

One of the most exciting signals of the deconfinement and the chiral phase transitions in heavy-ion collisions, the chiral magnetic effect, suggested in Ref. [1], predicts the preferential emission of charged particles along the direction of angular momentum in the case of the noncentral heavy-ion collisions due to the presence of nonzero chirality. This effect is because the strong magnetic fi...

متن کامل

Non - identical particle correlation analysis as a probe of transverse flow

Non-identical two particle correlation functions probe asymmetries between the average space-time emission points of different particle species. The system collective expansion would produce such asymmetry because massive particles, such as protons, are on average more pushed towards the edge of the system, than lighter ones, i.e. pions. Measuring pion-kaon, pion-proton and kaon-proton correlat...

متن کامل

Microscopic study of energy and centrality dependence of transverse collective flow in heavy-ion collisions

The centrality dependence of directed and elliptic flow in light and heavy systems of colliding nuclei is studied within two microscopic transport models at energies from 1A GeV to 160A GeV. The pion directed flow has negative slope in the midrapidity range irrespective of bombarding energy and mass number of the colliding ions. In contrast, the directed flow of nucleons vanishes and even devel...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Physical review letters

دوره 114 25  شماره 

صفحات  -

تاریخ انتشار 2015